library.phases.phases_implementation.modelling.shallow.model_definition.model_states.model_state module

class library.phases.phases_implementation.modelling.shallow.model_definition.model_states.model_state.InTuningState(model_sklearn: object, modelName: str, dataset: Dataset, results_header: list[str], model_type: str = 'classical')[source]

Bases: ModelState

fit(**kwargs)[source]
get_fit_data()[source]

Varies over each state (in post its training + val for instance)

get_predict_data()[source]
plot_convergence()[source]
predict()[source]
class library.phases.phases_implementation.modelling.shallow.model_definition.model_states.model_state.ModelState(model_sklearn: object, modelName: str, model_type: str, dataset: Dataset, results_header: list[str])[source]

Bases: ABC

abstractmethod fit()[source]
abstractmethod get_fit_data()[source]

Varies over each state (in post its training + val for instance)

abstractmethod get_predict_data()[source]
abstractmethod predict(is_training: bool = False)[source]
class library.phases.phases_implementation.modelling.shallow.model_definition.model_states.model_state.PostTuningState(model_sklearn: object, modelName: str, dataset: Dataset, results_header: list[str], model_type: str = 'classical')[source]

Bases: ModelState

fit(**kwargs)[source]
get_fit_data()[source]

Varies over each state (in post its training + val for instance)

get_predict_data()[source]
predict()[source]
class library.phases.phases_implementation.modelling.shallow.model_definition.model_states.model_state.PreTuningState(model_sklearn: object, modelName: str, model_type: str, dataset: Dataset, results_header: list[str])[source]

Bases: ModelState

fit()[source]
get_fit_data()[source]

Varies over each state (in post its training + val for instance)

get_predict_data()[source]
predict()[source]