Source code for library.pipeline.pipeline

from library.phases.phases_implementation.dataset.dataset import Dataset
from library.phases.phases_implementation.EDA.EDA import EDA
from library.phases.phases_implementation.data_preprocessing.data_preprocessing import Preprocessing
from library.phases.phases_implementation.feature_analysis.feature_analysis import FeatureAnalysis
from library.phases.phases_implementation.modelling.modelling import Modelling

# Global variables
RANDOM_STATE = 99

[docs] class Pipeline: """ Initializes all the phases of the pipeline. """ def __init__(self, dataset_path: str, model_results_path: str, model_task: str, random_state: int = RANDOM_STATE): self.dataset = Dataset(dataset_path, model_task, random_state) self.EDA = EDA(self.dataset) self.preprocessing = Preprocessing(self.dataset) self.feature_analysis = FeatureAnalysis(self.dataset) self.modelling = Modelling(self.dataset, model_results_path)
[docs] def speak(self, message: str) -> None: """ This is just an example function used to illustrate the pipelines functionality. Parameters ---------- message : str The message to print """ print(f"{message} from {id(self)}")