Source code for library.pipeline.pipeline
from library.phases.phases_implementation.dataset.dataset import Dataset
from library.phases.phases_implementation.EDA.EDA import EDA
from library.phases.phases_implementation.data_preprocessing.data_preprocessing import Preprocessing
from library.phases.phases_implementation.feature_analysis.feature_analysis import FeatureAnalysis
from library.phases.phases_implementation.modelling.modelling import Modelling
# Global variables
RANDOM_STATE = 99
[docs]
class Pipeline:
"""
Initializes all the phases of the pipeline.
"""
def __init__(self, dataset_path: str,
model_results_path: str,
model_task: str,
random_state: int = RANDOM_STATE):
self.dataset = Dataset(dataset_path, model_task, random_state)
self.EDA = EDA(self.dataset)
self.preprocessing = Preprocessing(self.dataset)
self.feature_analysis = FeatureAnalysis(self.dataset)
self.modelling = Modelling(self.dataset, model_results_path)
[docs]
def speak(self, message: str) -> None:
"""
This is just an example function used to illustrate the pipelines functionality.
Parameters
----------
message : str
The message to print
"""
print(f"{message} from {id(self)}")